男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Chinese scientists develop AI model to predict stellar flares

Xinhua | Updated: 2025-05-28 09:10
Share
Share - WeChat
This image provided by Beijing Normal University shows a solar flare with a coronal mass ejection. [Photo/Beijing Normal University/Handout via Xinhua]

BEIJING -- Chinese scientists have developed FLARE, a cutting-edge artificial intelligence (AI) model designed to predict stellar flares, offering a transformative tool for astronomical research, the Institute of Automation under the Chinese Academy of Sciences (CAS) announced on Tuesday.

The model, co-developed by researchers from the CAS Institute of Automation and the CAS National Astronomical Observatories, leverages the integrated intelligent research platform ScienceOne to analyze stellar data and forecast magnetic eruptions on stars.

Stellar flares are sudden bursts of energy caused by the release of magnetic fields in a star's atmospheres. They hold critical clues for understanding stellar structure, evolution, magnetic activity, and the potential for habitable exoplanets, said Chen Yingying, a researcher from the Institute of Automation.

"Research has shown that various physical properties of stars, such as age, rotation velocity, and mass, as well as historical flare records, are significantly related to stellar flares," Chen said.

However, limited observational data has hindered comprehensive studies. Accurately predicting the timing of stellar flares has become an important task in astronomical studies, said Chen.

The researcher further explained that FLARE addresses this gap by integrating a star's physical properties with historical flare records through its unique architecture, combining soft prompt modules and residual record fusion modules, to enhance feature extraction from light curves and therefore, significantly improve prediction accuracy.

Notably, the model demonstrates a certain level of adaptability, enabling precise flare forecasts based on varying light curve patterns of different stars.

Even for the same star with different variability patterns, precise predictions can still be achieved, said Chen.

The research paper detailing FLARE's development has been accepted by the 34th International Joint Conference on Artificial Intelligence, a premier global AI conference.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 八宿县| 大名县| 汕尾市| 上思县| 孝昌县| 乌苏市| 荥阳市| 文山县| 噶尔县| 汉沽区| 桐庐县| 南木林县| 西藏| 拜城县| 泽库县| 长顺县| 会同县| 鄂托克前旗| 梓潼县| 宣城市| 邳州市| 澄城县| 华宁县| 丹江口市| 金秀| 唐河县| 曲麻莱县| 綦江县| 依安县| 伊宁县| 灵丘县| 怀化市| 米泉市| 连江县| 江口县| 海淀区| 德庆县| 南丹县| 阳泉市| 葫芦岛市| 古蔺县|