男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

US EUROPE AFRICA ASIA 中文
Business / Auto China

Electrical advance offers power without the wait

By Cheng Yingqi and Wang Ying in Shanghai (China Daily) Updated: 2015-12-19 10:11

Electrical advance offers power without the wait

A worker checks a pure electric car at a workshop in Jianghuai Automobile Co Ltd in Hefei, capital of East China's Anhui province, Aug 19, 2014. [Photo/Xinhua]

Electric cars seem to be an ideal option among next-generation automobiles: They are eco-friendly and accelerate fast with less noise, among other benefits.

The trouble is that every 300 kilometers you may have to wait hours to refill your batteries at a charging station.

Now, researchers from China and the United States have come up with a possible solution. On Friday, a research result published in the journal Science reported a method that promises to triple the energy capacity of supercapacitors, making them comparable - and perhaps superior - to some advanced batteries.

"We have managed to find a balance between fast-charging and storage capacity that could make supercapacitors available for practical applications," said Lin Tianquan, a member of the research team from the Shanghai Institute of Ceramics affiliated with the Chinese Academy of Sciences.

Lithium-ion batteries, like those used in mobile phones and electric cars, are characterized by high capacity compared with their volume and weight. But the disadvantage is obvious, too: they usually take a long time to charge and have limited peak power because the risk of overheating.

Supercapacitors are a different type of energy storage device. Usually, supercapacitors have superfast recharging times and higher limits on output power, but the storage capacity is only 5 percent of that of lithium-ion batteries.

Researchers at the Shanghai Institute of Ceramics, Peking University and the University of Pennsylvania improved a material called grapheme to increase the storage of supercapacitors while keeping their other good features.

"We managed to enhance the properties of supercapacitors by changing the structure of graphene," said Huang Fuqiang, a researcher at the Shanghai Institute of Ceramics.

Graphene is one of the thinnest, lightest, strongest and most conductive materials known to man. It consists of a single layer of carbon atoms arranged in a honeycomb structure. The scientists changed the structure into tubes 4 to 6 nanometers wide. The tubes allow an increase storage capacity.

Before the improvement, a bus could recharge for 30 seconds and run for 5 kilometers on a traditional supercapacitor.

"That works in a small city or airport, but there is obviously a lot to be desired," I-Wei Chen, a materials physicist at the University of Pennsylvania who also worked on the breakthrough, was quoted as saying by IEEE Spectrum, a magazine of the Institute of Electrical and Electronics Engineers in the US.

"Our battery has five times the energy, so it can run 25 kilometers and still charge at the same speed. We are then talking about serious applications in a serious way in transportation," he said.

Hot Topics

Editor's Picks
...
主站蜘蛛池模板: 任丘市| 同江市| 巴南区| 南昌县| 巨鹿县| 中超| 新竹县| 承德市| 莒南县| 芦山县| 景谷| 余庆县| 同江市| 龙泉市| 游戏| 荣成市| 会泽县| 台东县| 睢宁县| 临沭县| 江北区| 广水市| 黄石市| 贺州市| 新巴尔虎左旗| 精河县| 西乌珠穆沁旗| 孝义市| 义乌市| 祥云县| 曲松县| 丹巴县| 泸定县| 枣阳市| 七台河市| 北票市| 邯郸市| 静宁县| 闵行区| 黄浦区| 富蕴县|