男友太凶猛1v1高h,大地资源在线资源免费观看 ,人妻少妇精品视频二区,极度sm残忍bdsm变态

left corner left corner
China Daily Website

3D printing helps reveal bacterial infections

Updated: 2013-10-08 09:51
( Xinhua)

WASHINGTON -- US researchers said Monday they have devised a three dimensional microscopic printing technique to study how communities of bacteria, such as those in the human gut and lungs, interact and influence human health.

Bacteria in the human body often thrive within structured 3D communities that contain multiple bacterial species. Recent studies have found that relationships between structure and function in these microbial ecosystems can affect human health, such as the virulence of infections in chronic wounds.

To help study these relationships, researchers from the University of Texas developed a laser-based printing technology to build protein "cages" in gelatin for bacteria in almost any 3D shape or size.

Gelatin, a highly porous material, allows the enclosed cells to both grow rapidly and communicate with other species growing in separate, nearby enclosures.

"What's key is these structures aren't just controllable in terms of their geometries; they're also very bio-friendly," lead author Jason Shear, professor of chemistry at the university said in a statement.

"The walls that we make out of these protein molecules are linked together tightly enough to prevent the bacteria from escaping, but they are porous enough to be chemically permissive," Shear said.

"Nutrients can come in. Waste can go out. Signals can be exchanged. They're trapped in these tiny houses, but they function like they do in biological environments," he added.

The researchers said the new technique should enable an entirely new class of experiments that better approximate the conditions that bacteria encounter in actual biological environments, such as those in the human body.

They demonstrated that a community of Staphylococcus aureus, which can cause some skin infections, became more resistant to antibiotics when it was contained within a larger community of Pseudomonas aeruginosa, a bacteria involved in various diseases, including cystic fibrosis.

Among the long-term goals are to use the insights gleaned from such experiments to better combat infections in humans, the researchers said.

"Think about a hospital, which we know is not a good place to be to avoid infections," said Shear. "There are studies that seem to indicate that infections are transmitted by very small microcolonies of bacteria, which are likely transported by equipment or staff from one part of the hospital to another. We currently know little about how this is happening. How many cells does it take? Do these microcommunities become particularly virulent or antibiotic resistant precisely because they're small, and then in turn change the properties of bacteria on our skin or in our bodies? Now we have a means to start asking these questions much more broadly."

The findings were published in the journal Proceedings of the National Academy of Sciences.

 
8.03K
 
主站蜘蛛池模板: 南充市| 扶绥县| 隆林| 布拖县| 祥云县| 肇庆市| 新乡市| 汤阴县| 策勒县| 双柏县| 靖远县| 阿瓦提县| 巩义市| 疏勒县| 含山县| 库尔勒市| 古丈县| 黄大仙区| 祁门县| 军事| 疏附县| 永德县| 靖江市| 滨海县| 蚌埠市| 永川市| 嵊州市| 望城县| 宜州市| 射洪县| 佛教| 安陆市| 甘德县| 南陵县| 金华市| 永吉县| 太谷县| 固原市| 璧山县| 婺源县| 林口县|